Sari la continut

Descoperă habits by Republica

Vă invităm să intrați în comunitatea habits, un spațiu în care înveți, găsești răspunsuri și resurse pentru a fi mai bun, pentru a avea o viață mai sănătoasă.

5 observații la soluția Problema 6 pentru dl Nicușor Dan

 Dl Nicușor Dan a explicat la un post de televiziune, în urma solicitării unui jurnalist, adică așa cum s-a întâmplat în cazurile „Dăncilă – aria cercului” și „Dăncilă – teorema lui Pitagora”, soluția pe care a dat-o celebrei „Problema nr. 6” la Olimpiada Internațională de Matematică de la Canberra, Australia, 1988: „Demonstrați că dacă a, b sunt întregi pozitivi, iar ab+1 divide a^2 + b^2, atunci raportul (a^2 + b^2)/(ab+1) este un pătrat perfect”. Atunci, dl Dan a obținut punctajul maxim pe ansamblul subiectelor și medalia de aur, performanță pentru care îl felicit acum.

Citesc însă pe contul de facebook al d-sale demonstrația prezentată la tv. Pentru pasionați. Sunt și eu unul. Linia generală a raționamentului este corectă și frumoasă, dar am câteva observații. 

 Dl Nicușor Dan scrie așa:

iii. Dacă b^2 – N > 0, folosim a doua relație între rădăcinile ecuației de gradul 2, a(Nb-a) = b^2 – N. Rezultă că Nb-a este negativ, deci ca a > Nb. [aici intervine a treia observație/intuiție, cu cât raportul a/b este mai mare, cu atât numărul (a^2+b^2)/(ab+1) este mai mare, și pare că va fi prea mare]. În acest caz avem

(a^2+b^2)/(ab+1) = (a^2+b^2)/ab x ab/(ab+1) = (a/b + b/a) (1-1/ab)

Din ipoteza (a/b + b/a) este cel puțin (N+1/N) iar (1-1/ab) este cel puțin (1-1/N^3).

Cu un calcul scurt rezultă că (a^2+b^2)/(ab+1) este mai mare decât N, contrar ipotezei.

Cu asta, problema este rezolvată. Am văzut că dacă (a,b) este o soluție și N nu este pătrat perfect găsim o soluție mai mică. Considerăm soluția (a,b) cea mai mică. Întrucât nu există soluție mai mică, rezultă că N este pătrat perfect.

Observațiile sunt:

1. La punctul iii)., reprodus mai sus, în ipoteza b^2 – N > 0, folosind formula Vieta a produsului rădăcinilor, rezultă a(Nb-a)= b^2-N. De aici, afirmă dl Dan, ar rezulta că termenul (Nb-a) este negativ. Ceea ce este imposibil: a este pozitiv, b^2-N este pozitiv, deci produsul a două numere este pozitiv, unul dintre ele este pozitiv, deci și celălalt nu poate fi decât pozitiv, nicidecum negativ.

2. În seria de egalități

(a^2+b^2)/(ab+1)=(a^2+b^2)/ab x ab/(ab+1)=(a/b+b/a) (1-1/ab), cea de-a doua este imposibilă. Într-adevăr, primii termeni ai egalității, adică (a^2+b^2)/ab și (a/b+b/a) sunt egali, dar ceilalți doi, ab/(ab+1) și (1-1/ab) n-au cum să fie. Căci, ab/(ab+1) = (1-1/ab) implică ab/(ab+1) = (ab-1)/ab implică (egalând produsul mezilor cu cel al extremilor) a^2 b^2 = a^2 b^2 - 1. De unde rezultă 0 = - 1, imposibil.

3. Afirmația (a/b + b/a) este cel puțin (N+1/N) nu e riguros adevărată. Din a > Nb rezultă (a/b) > N, deci a/b poate fi minorat prin N, dar b/a < 1/N, deci nu poate fi minorat prin 1/N.

4. Nu înțeleg de unde apare puterea a treia a lui N în expresia (1-1/N^3).

5. Aș vrea să văd „calculul scurt” din care, pe baza ipotezelor de mai sus, ar rezulta că (a^2+b^2)/(ab+1) este mai mare decât N.

Sper că dl Nicușor Dan va răspunde la toate acestea. Pentru pasionați, cum spune dânsul. 

Urmăriți Republica pe Google News

Urmăriți Republica pe Threads

Urmăriți Republica pe canalul de WhatsApp 

Abonează-te la newsletterul Republica.ro

Primește cele mai bune articole din partea autorilor.



Îți recomandăm

Solar Resources

„La 16 ani, stăteam de pază la porumbi. Voiam să-mi iau o motocicletă și tata m-a pus la muncă. Aveam o bicicletă cu motor și un binoclu și dădeam roată zi și noapte să nu intre cineva cu căruța în câmp. Că așa se fura: intrau cu căruța în mijlocul câmpului, să nu fie văzuți, făceau o grămadă de pagubă, călcau tot porumbul. Acum vă dați seama că tata nu-și punea mare bază în mine, dar voia să mă facă să apreciez valoarea banului și să-mi cumpăr motocicleta din banii câștigați de mine”.

Citește mai mult

Octavian apolozan

Tavi, un tânăr din Constanța, și-a îndeplinit visul de a studia în străinătate, fiind în prezent student la Universitatea Tehnică din Delft (TU Delft), Olanda, una dintre cele mai renumite instituții de învățământ superior din Europa. Drumul său către această prestigioasă universitate a început încă din liceu, când și-a conturat pasiunea pentru matematică și informatică.

Citește mai mult

Green Steps

100.000 de români au participat la marcarea a 100 de kilometri din traseul Via Transilvanica într-un mod ingenios. „Drumul care unește”, este un traseu turistic de lungă distanță, care traversează România pe diagonală, de la Putna la Drobeta Turnu Severin și este destinat drumeției pe jos, cu bicicleta sau călare. Via Transilvanica este semnalizată cu marcaje vopsite și stâlpi indicatori. Pe parcursul drumeției, călătorii vizitează ceea ce constructorii spun că este cea mai lungă galerie de artă din lume, pentru că la fiecare kilometru se găsește o bornă din andezit sculptată individual.

Citește mai mult