Sari la continut

Descoperă habits by Republica

Vă invităm să intrați în comunitatea habits, un spațiu în care înveți, găsești răspunsuri și resurse pentru a fi mai bun, pentru a avea o viață mai sănătoasă.

C-așa nu e-n tenis: o dublă greșeală care dă bine

Întrebare, pe care s-a întâmplat să mi-o pun singur: câte numere naturale de 2 cifre există?

Carevasăzică: primul este 10. Ultimul, 99. De la 10 (inclusiv) la 99 (inclusiv) sunt 90 de numere de 2 cifre. Și gata.

Sau nu. Un principiu rațional constă în a încerca să generalizezi un rezultat particular. Există o formulă care să funcționeze dincolo de calculul „băbesc”?

Avem 10 cifre: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Căutăm numerele de 2 cifre care pot fi formate cu aceste 10 cifre. 

Ar putea fi, intuitiv, ceva de analiză combinatorică – permutări, aranjamente, combinări. Permutări, adică n! = 1∙ 2 ∙ 3 ∙ 4∙ ..... n, nu e cazul, căci avem nevoie de elemente grupate. Combinări? Iar nu, pentru că perechile C10(2) nu iau în considerare ordinea: avem 13, nu mai punem 31, 24 e totuna cu 42.

Rămân aranjamentele, An(k), care introduc relația de ordine, fiecare pereche cu inversul ei – 13 și 31, 24 și 42, de pildă. Formula de calcul pentru aranjamente este An(k)=n!/(n-k)! Prin urmare, A10(2)=10!/(10 -2)!=10!/8!=1∙2∙3∙4∙5∙6∙7∙8∙9∙10/1∙2∙3∙4∙5∙6∙7∙8=9∙10=90. Perfect! Exact rezultatul găsit prin calcul băbesc.

Dar, alt principiu rațional nu îmi dă pace: atunci când crezi că ai găsit o formulă generală, verific-o pe seturi de date modificate. Să calculăm, deci, câte numere de 3 cifre există, folosind formula descoperită. Avem: A10(3)=10!/(10-3)!= 10!/7!=8∙9∙10=720. Ceva, intuiția, experiența, îmi spune că rezultatul nu arată prea bine. Ia să ne întoarcem la metoda băbească. Primul număr de 3 cifre este 100. Ultimul, 999. De la 100 (inclusiv) la 999 (inclusiv) sunt 900 de numere. Nicidecum 720. Nasol. 

Formula pentru care abia mă bucurasem nu funcționează dacă în loc de numere de 2 cifre e vorba de numere de 3 cifre. Regulă rațională: dacă formula pentru un set de date nu se mai verifică variind datele, este probabil că era greșită și în cazul setului de date inițial, dar n-am văzut greșeala.

Reluăm, A10(2) și ne uităm mai atent. Hopa! Aranjamentele sunt poziționale, deci avem 10, dar și 01; 20, dar și 02; 30, dar și 03. Or, 01, 02, 03, avându-l pe 0 în față, nu sunt considerate numere de 2 cifre. Câte din astea sunt? Păi, 01, 02, ..... 09, adică 9. Deci, aranjamente de 10 elemente luate câte 2 sunt cu 9 mai multe decât numerele de 2 cifre. Adică 90-9=81.

Bun, dar așa cum arată invincibilul calcul băbesc, rezultatul trebuie să fie 90. Ne mai uităm o dată și mai găsim niște perechi speciale: 11, 22, 33, 44, 55, 66, 77, 88, 99. Astea sunt, firește, numere, dar nu sunt aranjamente, căci aranjamentele nu permit repetiția, presupun numai cifre (simboluri) distincte (perechea 00 o eliminăm din discuție, ea nefiind nici număr, nici aranjament). Deci aceste 9 perechi trebuie adăugate la numărul numerelor de 2 cifre recalculat mai sus, adică 81. Rezultatul: 81+9=90. Cred că este un frumos exemplu de eroare ascunsă dintre cele mai parșive: cele 2 seturi de perechi pe care nu le-am luat în considerare se „mănâncă” și dau, înșelător, bine.

Deci, formula aranjamentelor nu merge. Aveți dumneavoastră o soluție, stimați iubitori de raționamente?

Îți recomandăm

Ps. 

Câte numere naturale de 2 cifre există? Dar de 3 cifre? Dar de n cifre? Aceasta a fost problema propusă în textul precedent, „C-așa nu e-n tenis: o dublă greșeală care dă bine”. Scopul textului a fost enunțarea unor reguli raționale cu care să ne putem orienta în situații matematice – și nu numai – înșelătoare.

Răspunsul era: N=10^n-10^(n-1) sau N=9∙10^(n-1), adică 9 înmulțit cu 10 la puterea n-1. Pentru n=1→N=9 (0 nefiind considerat număr natural), n=2→N=9∙10=90, n=3→N=9∙100=900 ș.a.m..d.

Mulțumesc tuturor celor care au acordat atenție problemei și îi felicit pe cei care au oferit observații și soluția corecte: Verde Ioana (soluția cu cel mai mare grad de generalitate, N=(m-1)∙m^(n-1), unde m este baza de numerație), Ionuț Gabriel Oțelea, Mihai Filip, Dan Răduț, Costin Popescu, Luce Nera, Richard Dimitriu.

Ps. 

Câte numere naturale de 2 cifre există? Dar de 3 cifre? Dar de n cifre? Aceasta a fost problema propusă în textul precedent, „C-așa nu e-n tenis: o dublă greșeală care dă bine”. Scopul textului a fost enunțarea unor reguli raționale cu care să ne putem orienta în situații matematice – și nu numai – înșelătoare.

Răspunsul era: N=10^n-10^(n-1) sau N=9∙10^(n-1), adică 9 înmulțit cu 10 la puterea n-1. Pentru n=1→N=9 (0 nefiind considerat număr natural), n=2→N=9∙10=90, n=3→N=9∙100=900 ș.a.m..d.

Mulțumesc tuturor celor care au acordat atenție problemei și îi felicit pe cei care au oferit observații și soluția corecte: Verde Ioana (soluția cu cel mai mare grad de generalitate, N=(m-1)∙m^(n-1), unde m este baza de numerație), Ionuț Gabriel Oțelea, Mihai Filip, Dan Răduț, Costin Popescu, Luce Nera, Richard Dimitriu.

Abonează-te la newsletterul Republica.ro

Primește cele mai bune articole din partea autorilor.


Îți recomandăm

Stinge lumina!

Consumerismul nostru a lucrat în compensare. Ne-am cumpărat frigidere mari și le-am burdușit cu mâncare. Ne-am vârfuit cărucioarele la supermarket, cumpărând produse la ofertă de care nu aveam nevoie și care ni s-au stricat în cămară. Ne-am construit clădiri de sticlă pe care le-am luminat feeric, așteptându-ne ca factura la curent s-o plătească sfântul CEO. (Foto: Profimedia Images)

Citește mai mult

Carlos Moreno

„Logica e simplă de fapt - cu cât se construiesc mai multe drumuri pentru mașini, cu atât vom avea mai multe mașini, iar cu cât vom construi mai multe piste pentru biciclete, cu atât vom avea mai multe biciclete, de asemenea, cu cât vom face mai multe spații pentru oameni, cu atât va veni mai multă lume să facă activități”, spune Carlos Moreno. (Foto: ARCEN)

Citește mai mult

UNStudio 1

UNStudio este unul dintre cele mai cunoscute și apreciate birouri de arhitectură din lume, cu filiale în Amsterdam, Frankfurt, Shanghai, Hong Kong, Dubai și Melbourne. are în portofoliu peste 120 de proiecte internaționale, precum clădiri de birouri, rezidențiale, muzee, poduri, dar și masterplanuri urbane. Printre cele mai cunoscute lucrări - Podul Erasmus din Rotterdam, Mercedes-Benz Museum din Stuttgart, Arnhem Central Station, Designul Doha Metro Station.

Citește mai mult

Marius Sava

„La mine pacienții nu vin niciodată singuri, vin cu partenerul”, spune medicul specialist pneumolog Marius Sava, cu competențe în somnologie, de la Rețeaua Privată de Sănătate Regina Maria, despre cei care ajung la ușa cabinetului cu simptome de apnee în somn.

Citește mai mult